Configuration Maintenance for Distributed Applications Management
Lutfiyya, Hanan L;Marshall, Andrew D;Bauer, Michael A;Martin, Patrick;Powley, Wendy
Journal of Network and Systems Management; Jun 2000; 8, 2; ProQuest

pg. 219

Journal of Network and Systems Management, Vol. 8, No. 2, 2000

Configuration Maintenance for Distributed
Applications Management

Hanan L. Lutfiyya,! Andrew D. Marshall,! Michael A. Bauer,!
Patrick Martin, and Wendy Powley

The MANDAS project has defined a layered architecture for the management of
distributed applications. In this paper we examine a vertical slice of this architecture,
namely the management applications and services related to configuration manage-
ment. We introduce an information model which captures the configuration
information for distributed applications and discuss a repository service based on
the model. We define a set of services and management applications to support
maintenance of configuration information, and describe how the different types
of configuration information are collected. Finally, we present two management
applications that use configuration information.

KEY WORDS: Distributed application management; configuration management;
management services.

1. INTRODUCTION

Distributed computing systems typically consist of large numbers of heteroge-
neous computing devices connected by comunication networks, various oper-
ating system resources and services, and user applications running on them.
The resources and applications are becoming indispensable to many enterprises,
but as distributed systems become larger and more complex, more things can
go wrong, potentially interrupting or crippling critical operations. Management
issues at the network and systems levels have received a great deal of attention
but the same thing cannot be said for the application level.

The objective of the Management of Distributed Applications and Systems
(MANDAS) project is to address problems arising in the management of dis-

I Department of Computer Science, The University of Western Ontario, London, Ontario, Canada.
E-mail: hanan{flash,bauer}@ csd.uwo.ca

2Department of Computing and Information Science, Queen’s University, Kingston, Ontario,
Canada. E-mail: martin{wendy} @ qucis.queensu.ca

219

1064-7570/00/0600-0219$18.00/0 © 2000 Plenum Publishing Corporation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

220 Lutfiyya, Marshall, Bauer, Martin, and Powley

Management Applications

Management Service
Interface

Managed Objects

Fig. 1. MANDAS management architecture (adapted from Bauer et al. [1]).

tributed applications. We take management to include configuration manage-
ment, fault management, performance management, and application metrics and
modeling.

Figure 1 shows the architecture we have adopted to support applications
management [1]. Management applications are used to perform management
tasks, such as system configuration, analysis of performance bottlenecks, report
generation, visualization of network or system activity, simulation, and mod-
eling. The management applications make us of a set of management services
which we organized as four subsystems: the repository services subsystem, the
configuration services subsystem, the monitoring services subsystem, and the
control services subsystem. The management services in turn interact with man-
agement agents through various protocols, for example SNMP or CMIP. Each
management agent monitors and collects data about a set of managed objects.

The development of the management applications, the repository services,
configuration services and monitoring services needed for configuration man-
agement is the subject of the paper. The remainder of the paper is structured as
follows. Section 2 describes the information model used to represent configu-
ration information. Section 3 describes the repository services. Sections 4 and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Configuration Maintenance for Distributed Applications Management 221

S outline the services to maintain configuration information and to collect it,
respectively. Section 6 presents two management applications which supply and
use configuration information. Section 7 discusses related work, and Section 9
summarizes the paper.

2. INFORMATION MODEL

Based on a study of management systems, we have identified three different
types of data in distributed applications management [2]:

 Structural data: Descriptions of the objects composing an application, the
objects composing the environment in which the application runs, and the
relationships among these objects.

o Measurement data: Data describing the run-time performance of the appli-
cation objects which may be collected by monitoring an object (e.g., pro-
cess CPU or disk use) or may be derived from collected data.

o Control data: Data describing the execution state of the application
objects, such as the current application and system parameter settings,
and the event notifications generated by the objects.

Structural data, which is the type of data discussed in this paper, is the pri-
mary input for configuration management and is used by other management appli-
cations in locating, requesting, and interpreting measurement, and control data.
The structural data for amanaged application presents two views of an application:
the runtime view and the code view. The runtime view of an application consists of
descriptions of objects related to the execution of the application, that is applica-
tion instances and processes. The code view of an application consists of objects
related to the construction of an executing application, that is source files, data files,
interface files, object files, executable files, makefiles, and script files. The struc-
tural data for a managed application also contains descriptions of the environment
in which an application executes. Environment objects include objects related to
management, such as management agents and sensors, and objects related to the
runtime environment such as hosts and network connections.

Structural data typically consists of many object instances of relatively few
types, for example there may be many process instances active at one time and
all can be described in the same way. These object descriptions can be complex
and will typically outline the relationships the object has to other objects. For
instance, a process description contains properties like process identifier, parent
process identifier, start time and end time, and relationships to its host, its applica-
tion, its executable file, its data files, and other processes. Retrievals from the struc-
tural data will primarily be via queries using object identifiers or attribute values,
or following relationships to other objects. Structural data is also relatively static
since it is only updated for “significant events” such as process creation and pro-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

222 Lutfiyya, Marshall, Bauer, Martin, and Powley

cess termination. Finally, the development of an information model is an iterative
process, that is, as we gain more experience and understanding of distributed appli-
cation management, the model will change and evolve. These properties suggest an
object-oriented information model that provides mechanisms to support classifica-
tion, generalization and aggregation is the most appropriate representation.

2.1. Modeling Constructs

The role of the information model is to represent the structural data for the
managed applications. Our information model is a structurally object-oriented
model based on the Telos language [3]. It uses the following constructs:

o Attribute: An attribute is a particular property of an object. Each attribute
has a type which may be primitive type, such as string, integer or real,
or a user-defined class. In the latter case, the value for the attribute is a
reference to an instance of that class. Attributes may be single-valued or
multi-valued.

o Object: An object is an identifiable collection of attribute values which
describe an application entity. Every object has a unique object identifier
or name.

o Class: A class is a collection of objects that share common properties.
An object is related to a particular class via the instance-of relationship.
Classes are related via the generalization or is-a relationship.

o Metaclass: A metaclass is a collection of classes that share common cate-
gories of attributes where a category groups attributes related to a particu-
lar aspect of an object. A class is related to a metaclass via the instance-of
relationship. Metaclasses are related via the is-a relationship.

2.2, Modeling Concepts

The information model’s class hierarchy is shown in Fig. 2. The model is
defined at two levels of abstraction. The nodes above the horizontal line are
metaclasses and the nodes below it are classes. Nodes at the same level of
abstraction are related by the is-a relationship, which is represented by solid
lines. The class nodes are instances-of metaclass nodes, which is represented by
the dashed lines.

Metaclasses, as mentioned earlier, are used to group together classes whose
attributes come from the same categories. The root metaclass RepositoryOb-
jectClass defines the categories of attributes found in all classes. The meta-
classes under RepositoryObjectClass introduce attribute categories appro-
priate for the different collections of objects represented by the classes, that
is, hardware objects (HardwareObjectClass) such as nodes and networks,
runtime objects (RuntimeObjectClass) such as processes and application

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Configuration Maintenance for Distributed Applications Management 223

RepositoryObjectClass
HardwareObjectClass RmnmeggjectClass { VersionedObjectClass
; LA 7/ CodeObjectClass ;
E /,/’ /i RepositoryObject ’." '."
i Sensor - StoredObject ','l
i ManagementAgent; !
i ManagedObject DataFile VersionedObject
) Application
HardwareMO SoftwareMO Cluster AN
Capsule Interface DceAppl
mBasicEngMeeringObject |
Host RemyNetwork ApplInstance m{yess DCECapsule DCElnterface

DceApplinstance DceProcess

DceClientProcess DceServerProcess DcePeerProcess

Fig. 2. Information model class hierarchy.

instances, and code view objects (CodeObjectClass) such as source files and
executables. The VersionedObjectClass metaclass defines the categories of
attributes related to the version information that is required for some of the code
view objects. For example, the Runt imeObjectClass metaclass is defined as
follows.

MetaClass RuntimeObjectClass
isa RepositoryObjectClass
with
properties
actions: Proposition;
notifications: Proposition;
monitorAttributes: Proposition;
stateAttributes: Proposition
relations
mgmtRelationships: Proposition
end

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

224 Lutfiyya, Marshall, Bauer, Martin, and Powley

where actions include properties related to managing an object, notifications are
properties which describe the management notifications that can be generated
by an object, monitorAttributes include the properties collected about an
object, stateAttributes are the properties describing the current state of an
object, and mgmtRelationships are links related to managing an object.

The root of the class hierarchy is RepositoryObject which defines prop-
erties common to all objects in the repository. The two main subtrees in the
hierarchy, under StoredObject and ManagedObject, contain the application
objects related to the code view and runtime view of an application, respectively.
The other two subclasses of RepositoryObject, namely ManagementAgent
and Sensor describe objects in the management system itself that are related to
the managed applications.

The code components of a distributed application are modeled as instances
of the classes in the subtree under the class StoredObject which defines the
file-related properties of the objects. The class VersionedObject defines the
properties related to the maintenance of versions for some components. The
classes used to represent the components include the engineering structures of the
Reference Model for Open Distributed Processing (RM-ODP) [4]. These struc-
tures provide a generic terminology which allows us to represent applications
built using different middleware such as the Open Software Foundation’s Dis-
tributed Computing Environment (DCE) or OMG’s CORBA [5]. The different
types of code components include the following:

BasicEngineeringObject defines the building blocks of the application,
namely source files. They contain the procedures or methods that perform
the processing of the system and a specification of the other software com-
ponents on which this component depends in order to operate correctly.

Cluster defines groupings of related objects, namely object files. They are an
abstraction used in reconfiguring an application.

Capsule defines the executables that make up the application. An executable is
instantiated on a host as a process. It also specifies other executables and
datafiles that this executable depends in order to operate properly.

DataFile defines the data files used by the managed applications.

Interface defines the components that specify the interfaces between executa-
bles in the application, for example, the IDL definitions of a client-server
interface in a DCE application.

Application defines the managed applications. Each object of the class points
to the necessary makefiles and scripts to create and deploy the particular
application.

Several of the code view classes (Capsule, Interface, and Application) are fur-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Configuration Maintenance for Distributed Applications Management 225

ther specialized to capture particular properties of components of a managed
DCE application. A similar kind of specialization can be performed for appli-
cations built with other middleware.

The runtime components of a distributed application are defined in the sub-
tree under the class ManagedObject which lists properties common to all man-
aged objects and is defined as follows.

class ManagedObject
in RuntimeObjectClass
isa RepositoryObject
with
descriptions
protocol: String
stateAttributes
operationStatus: String
actions
startManage: Action;
stopManage: Action;
changePriority: Action;
settingControl: Action
notifications
creation: Notification;
deletion: Notification;
attributeValueChange: Notification;
statusChange: Notification
monitorAttributes
measurementDataSet: {DataSource}
mgmtRelationships
mgmtAgent: ManagementAgent
end

ManagedObject is the ancestor class of all managed objects (hardware or soft-
ware) and defines their common properties. In particular, it introduces attributes
which describe basic management properties such as the actions to which a man-
aged object must respond, the notifications which a managed object must gen-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

226 Lutfiyya, Marshall, Bauer, Martin, and Powley

erate, the data sources which may be used to store measurement data for the
managed object, and the management agent responsible for the managed object.
[Note: The notation “{DataSource}” indicates a multivalued attribute.]

The two main types of managed objects of interest are hardware objects
(HardwareMO) and software objects (SoftwareM0). The two types of software
objects we manage are application instances (ApplInstance) and processes
(Process). Application instances and processes are further specialized to capture
information particular to DCE applications. The relationships between the code
and runtime objects of an application are represented as link, or object reference,
attributes in the class definitions. For example, the definition of the Process class
is as follows.

class Process
isa SoftwareMO
with
statelnfo
PID: Integer;
PPID: Integer;
UID: Integer;
GID: Integer;
processParameters: {String};
relocatable: Boolean;
processPriority: Integer
dependencies
componentOfAppInstance: Applnstance;
instantiatedFrom: Capsule;
dependsOn: {Process};
dependedOnBy: {Process};
usesDataFile: {DataFile};
residesOn: Host
end

The Process class can, in turn, be refined to capture properties of processes
in particular operating system or middleware environments. For example, the
class hierarchy contains several subclasses of Process which refine the notion
of process for the DCE middleware.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Configuration Maintenance for Distributed Applications Management 227

3. REPOSITORY SERVICES

The repository services provide the data management support required by
configuration management and the other management applications. We discuss
two aspects of the repository service, namely the Management Information
Repository (MIR), which implements the information model and stores the struc-
tural data, and the MIR Browser.

3.1. Management Information Repository

The MIR, which is shown in Fig. 3, uses a basic client-server architec-
ture. The MIR Server has two components: the Telos Repository, which provides
the back-end database for the MIR, and the MIR Server Interface, which takes
requests from MIR Clients and translates them into requests to the Telos Repos-
itory. A MIR Client also has two components: an application that requires access
to the MIR and the MIR Client Library, which is an Application Programming
Interface (API) to the MIR.

The Telos Repository used for the MIR prototype is the University of
Toronto implementation of the Telos language [3]. This implementation uses
ObjectStore as the underlying storage mechanism. [ObjectStore is a trademark
of Object Design, Inc.] The MIR Server Interface, which provides functions for
connecting to the repository, submitting and retrieving objects, and querying the
MIR, is implemented in C++ runs on an IBM RS/6000 computer on top of OSF
DCE [6]. [RS/6000 is a registered trademark of International Business Machines

MIR Clients

RS S

MIR Server

MIR: Mgmt Info Repository MIR Mgmt
Library

Fig. 3. MIR protoype.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

228 Lutfiyya, Marshall, Bauer, Martin, and Powley

Corporation.] The back-end of the interface communicates with the Telos Repos-
itory via the Telos Message Bus (TMB) API. Requests and results are passed
along the TMB in the form of s-expressions which are strings that are parsed and
understood by the Telos Repository. Although theoretically MIR Clients could
use the TMB API directly to access the Telos Repository, we decided to build
an intermediate layer (the MIR Server Interface) between the Telos Repository
and the MIR Clients for the following reasons:

e Database Independence: The MIR Server Interface buffers the MIR
clients from the specifics of Telos. This will allow us to change the under-
lying storage mechanism with minimal modifications to the overall sys-
tem. Only the back-end of the MIR Server Interface would need to be
modified in order to accommodate such a change. The MIR Client Inter-
face would remain stable, thus requiring no change to the possibly numer-
ous MIR Clients.
Multiplexing: The TMB allows only a single client to access the Telos
Repository at a time. The MIR Server uses threads to service and coordi-
nate multiple clients, sending one request at a time to the Telos Repository.
Extended Query Capabilities: The Telos Repository provides very limited
query capabilities. The MIR Server Interface extends these capabilities to
include conjunctive queries based on instance-of conditions, is-a relations
and queries by attribute value. The MIR Server Interface generates a query
which can be processed by the Telos Repository, sends the request to the
repository, then filters the result to return only the objects requested by
the MIR Client.
o MANDAS Project Requirement: One of the original design decisions of
the MANDAS project was to interface the various components using
DCE.

Clients, which consist of the Client Library and a MIR application, commu-
nicate with the MIR Server via DCE Remote Procedure Calls (RPCs). The Client
Library is implemented in C++ and uses the C++ API provided by the MIR
Server Interface. It presents applications with a view of the MIR which is consis-
tent with the MANDAS Information Model. There are three basic object types
used in the MIR: Management Meta Objects (MMOs), Management Schema
Objects (MSOs), and Management Data Objects (MDOs). MSOs are similar to
classes in an object-oriented programming language. They define the attributes
that an MDO may contain. The attributes are further grouped into categories that
are defined by an MMO. Each MSO is an instance of one or more MMOs (thus
specifying the categories of the attributes), and each MDO is an instance of an
MSO.

The MIR Client library provides functions for the following tasks:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Configuration Maintenance for Distributed Applications Management 229

connect to, and disconnect from the MIR
create, modify, and retrieve MMOs

« create, modify, and retrieve MSOs

create, modify, and retrieve MDOs

define query conditions and issue MDO queries

3.2. MIR Browser

The MIR Browser presents a graphical view of the contents of the repos-
itory, allowing users to examine the structure of the information model and to
see the relationships between the objects. They may also browse the data stored
in the MIR.

Figure 4 shows the MIR browser interface. The user connects to the MIR
and selects a class or metaclass from which to start browsing the class hierar-
chy. To see the subclasses associated with a particular metaclass or class, the
user clicks once on the object. Double clicking on an object displays the class
description for the selected class in the text window to the right.

In Fig. 4, the VersionedObject class has been selected as the starting
point for browsing the classes. The user has expanded the subtree to show
the subclasses of VersionedObject. The class description for Application is
shown in the text window to the right. The description shows the attributes and
their types as well as the instance-of and is-a relationships of the class.

Classes which have associated data objects (i.e., instances of the class) are
indicated by the data objects icon (as seen to the right of the Class objects in
Fig. 4). Selecting the icon produces a text box containing the information for
all the data objects associated with the class. In Fig. 4, the Capsule data objects
icon has been selected and one of the data objects is shown. The user may cycle
through the list of data objects, one at a time, by using the “Next” and “Previous”
buttons.

4. CONFIGURATION INFO MAINTENANCE

Configuration information, which makes up the majority of the structural
data, is stored in the MIR. The Configuration Maintenance Service enables man-
agement applications and other management services to retrieve and update the
configuration information as a result of changes. This service, which we have
implemented as a DCE server, is a client of the MIR and uses the MIR client
library to provide registration, query and update services to other management
entities.

We can categorize the service interfaces of the Configuration Maintenance
Service into four groups: registration, deregistration, query, and modification ser-
vices. To date, only the first three have been defined.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

230 Lutfiyya, Marshall, Bauer, Martin, and Powley

r Management Information Repository Browser N

File Options Help

BasicEngineeringDbject — feplication a
Instance of: ConfigureMgmtObjectClass
fppl ication Inherits from: VersionedObject
iVersionedUbJ’ectl Ecluster‘l Log:ée:;t;:'i:l;:?s:
gsesﬂataFile ¢+ DataFile
lependsOnfipp : Application
dependedOnByfpp 3 Application
currentInstances : ApplInstance
composedOf 3 Capsule
usefittributes
startUpScript 3 String
= Inherited attributess
Instance of Capsule descriptions
0ID: String
Instance: 1/1 descriptiont String
storefttributes
Ubgecc ?lass: SéteNgr:e; String
apsule + dtring
P fileType: String
sizet Integer

Attributes:

1 0ID: “/cis/mandas/zion/mir/MIRServer”
fileName: “/cis/mandas/zion/mir/MIRServer”
URL: "/cis/mandas/zion/mir/"

fileTypes “S_IFREG"

size: 1601876

ouner: "zion" A
lastAccess: "04/08/1397 03:40"
lastHodifys "07/18/1996 11:18"
pernissionsy "100000"
targetArch: "RS/6000"
versionfo; "2,1"
communicationType; “DCE®

iﬂone l

ouner: String
lastAccess: String
lastHodify: String
permissions: String
versionfttributes
targetArch: String
versionNo: String
communicationTypes String
creationlate; String
versionlependencies
derivedFrom: VersionedObject

1Next | {Previous

Fig. 4. MIR browser.

Registration Services allow for the registration of various system and application
components. The entities that can be registered, and the services responsible
for doing so are shown in Table 1.

Deregistration Services allow for the deregistration of the distributed system
components.

Table I. Registration Services

Registration service Entity
RegisterHost host
RegisterExecutable executable file
RegisterApplication application
RegisterApplicationInstance application instance
RegisterProcess process

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Configuration Maintenance for Distributed Applications Management 231

Table II. Query Services

Query routine Returns

RetrieveAllApplications Information about registered applications in the
system

RetrieveAllCapsulesInApplication Information about all executable files pertaining
to a specified registered application

RetrieveAllHosts Information about hosts in the system

RetrieveApplInstInApplication Application instances for a specified registered
application

RetrieveProcessesInAppInstance Information about a process of a specific
application instance

RetrieveProcessInfo Information about a specified registered
process

RetrieveCapsulelnfo Information about a specified capsule

Query Services allow other management services and management applications
within our management framework to retrieve configuration information
from the repository. The services available for retrieving information about
system and application components Table II.

Modification Services allow other management services and management appli-
cations within our management framework to modify configuration infor-
mation from the repository. These are similar to the registration service in
the number of interfaces and the type of information that can be entered in
(a table is not presented in order to save space).

5. COLLECTING CONFIGURATION INFO

This section describes the management applications and management ser-
vices used to collect configuration information.

5.1. Management Applications

We developed two management applications that collect code-view and run-
time information about distributed applications.

5.1.1. Code View Data Extractor

The code view of a distributed application includes configuration informa-
tion about the source files making up the application, the executables, the inter-
face descriptions, etc. The code view is represented in the information model
mainly by the classes in the StoredObject subtree including Application,
Interface, Cluster, Capsule and BasicEngineeringObject.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

232 Lutfiyya, Marshall, Bauer, Martin, and Powley

A distributed application may include many source files, many executa-
bles and many interfaces. Therefore the information required to describe the
code view of a distributed application is likely to be extensive. To populate the
MIR with the configuration information manually would be tedious and virtu-
ally impossible. The Code View Data Extractor (CVDE) automates much of this
process. The CVDE combines input from the user as well as information from
the application makefile(s) and from the Interface Definition Language file(s) to
automatically extract the configuration information. The tool also performs the
numerous MIR updates.

The CVDE prompts the user for general information abou the distributed
application such as the application name, the top-level directory of the applica-
tion code files, the architecture for which the application is intended, and the type
of middleware used, for example DCE. It also prompts the user for information
on each executable associated with the application such as the executable’s name
and the makefile and Interface Definition Language files associated with the exe-
cutable. The CVDE uses the information from the user to guide it as it examines
the code files associated with the application, extracts the configuration informa-
tion from those files, and generates the appropriate objects of the Application,
Cluster, Capsule, BasicEngineeringObject and Interface classes.

5.1.2. Configuration Management Application

The Configuration Management Application (CMA) can retrieve configu-
ration information about distributed applications from the MIR including the
structure of executing distributed applications, the source code location, and the
network topology. The user interacts with this management application to start,
stop, view, and manage applications.

Upon selecting the Start option the user is presented with another menu
with two options, one being Start Application. Selecting this option results in
a window appearing with a list of applications, from which the user may choose.
This list of applications is retrieved using RetrieveAllApplications. When
the user selects an application, the CMA does the following:

1. Generates a unique application instance identifier for the chosen applica-
tion and registers the application instance using the RegisterAppli-
cationInstance registration service.

2. Retrieves information about the executables needed to start the applica-
tion using the RetrieveAllCapsulesInApplication service.

3. Starts an agent for the application instance and then sends control com-
mands to the agent to cause it to run the executables making up the
application on the appropriate hosts.

The user can now retrieve information about the new application instance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Configuration Maintenance for Distributed Applications Management 233

by using the RetrieveApplInstInApplication and RetrieveProcess-
esInAppInstance service operations.

When the user selects the Stop Application option, a list of application
instances is displayed. Once the user selects an application instance, the CMA
identifies the component processes, using the RetrieveProcessesInAppIn-
stance and sends control commands to the agent to cause it to terminate the
processes. It also causes the application instance information to be removed from
the MIR.

5.2. Monitoring Services

The monitoring services subsystem is responsible for monitoring the behav-
ior of managed objects in a distributed system and determining changes in
the configuration. This is done using management agents and instrumentation.
An instrumented manageable process is an application process with embedded
instrumentation. Instrumentation is provided to application developers through a
C++ class library. More details on the design and implementation of the instru-
mentation may be found in Katchabaw et al. [7, 8]. The instrumentation com-
ponents are described later and are depicted graphically in Fig. 5.

o The management coordinator facilitates communication between man-
agement agents and an instrumented process. Its role includes message
routing for requests, replies, and reports flowing between the manage-
ment system and the instrumentation code. The management coordinator,
upon receiving incoming requests from management agents, invokes the
appropriate functionality in the instrumentation code. Similarly, the instru-
mentation code sends requests or reports to the appropriate management
agents through the management coordinator.

Instrumentation code provides an internal view of the managed process.
There are two types of instrumentation code: sensors and actuators. Sen-
sors encapsulate measurement data. They collect, maintain, and (perhaps)
process this information within the managed process. Sensors exhibit
monitor-like qualities in that they encapsulate measurement data and pro-
vide an interface through which probes (see later), other sensors, and the
management coordinator, can access their state in a controlled manner.
Sensors can be provided for a variety of performance metrics, to mea-
sure resource usage, to collect accounting statistics, and to detect faults.
Sensors get their input data from probes inserted at strategic points in the
process code or by reading other sensors. Sensors provide their informa-
tion to the management coordinator in the form of periodic reports, alarm
reports (when exceptional or critical circumstances arise) or in response
to explicit requests.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

234 Lutfiyya, Marshall, Bauer, Martin, and Powley

Management
Interactions

Fig. 5. Instrumentation architecture and environment.

The second type of instrumentation code is an actuator. The actuator
encapsulates management functions which exert control over the managed
process to change its operation.

o Instrumentation probes are embedded in the process to facilitate interac-
tions with the instrumentation code (the sensors and actuators). Probes
may be implemented as macros, function calls, or method invocations
injected, during development, into the instruction stream of the applica-
tion at locations called probe points.

For the purpose of monitoring process start-up, we have a probe point called
Process.instrumentionInit which is activated at process registration. This
probe does the following:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Configuration Maintenance for Distributed Applications Management 235

1. Retrieves the binding handle of a management agent. This binding han-
dle contains the information needed by a process to establish communi-
cation with the appropraite management agent.

2. Registers the process with the agent. The management agent is notified
of the existence of a new process and is provided with information about
the process such as its process identifier, parent process identifier, host,
start time, executable that the process is instantiated from and the appli-
cation instance. The management agent can then update the MIR using
the RegisterProcess service.

Another probe called Process_Terminate is used to notify an agent of
the termination of a process.

5.3. Operation

We now describe the operation of these services and management appli-
cations, highlighting the interactions of the management components that are in
place. We do this by describing the sequence of operations that takes place when
an example application is started.

To illustrate the operation, we will use a simple scheduling application that
has the following characteristics:

« A server maintains a database of stored information. Users run a client
program to schedule events involving themselves and other users, view
their calendar, and respond to events being scheduled for them to attend.

« The client executable is compiled from the following source code files:
bind.c¢, calfuncs.c, delete_user.c, display._event.c, error.c,
misc.c, new_event.c, new_user.c, show_users.c, term_server.c,
and xscheduler.c.

o The server executable is compiled from the following source code files:
client.c, queues.c, scheduler.c, scheduler_init.c, sched-
uler_mgmt_auth.c, scheduler_util.c, and server.c.

o The interface is in scheduler.idl.

Each of the .c and .id1 files are represented by an instance of the Basic-
EngineeringObject class. scheduler.idl is represented by an instance of
the Interface class. The client and server executables are represented by an
instance of the Capsule class. An instance of the Application class points to
the necessary makefiles to create the client and server executables.

We now describe the sequence of operations that take place when an appli-
cation instance is started.

1. Information about the application, which includes the list of executables

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

236 Lutfiyya, Marshall, Bauer, Martin, and Powley

needed, are stored in the MIR. This information is gathered and stored
using the CVDE prior to starting an application for the first time.

2. The Configuration Management Application is started. The user selects
the Start option. This presents another menu with two options, one being
Start Application. Selecting this option results in a window appearing
with a list of applications, from which the user selects an application
to be started. After the user selects an application, the following takes
place:

(a) A unique application instance identifier is generated for the chosen
application and the application instance is registered using the Reg-
isterApplicationInstance registration service.

(b) Information about the executables is retrieved using the Retrie-
veAllCapsulesInApplication configuration service which re-
turns information that includes the names of the executable files and
the host on which each executable file should run. A management
agent is started and control commands are sent to it to cause it to run
the executables making up the application on the appropriate hosts.

In our example, the Start Application uses the Application class to

determine the scripts needed for startup. In this particular case, only the

server is started. It is assumed that clients are started when needed.

3. When a process starts, it executes Process_instrumentionInit
which does the following:

(a) Retrieves the binding handle of the agent. The binding handle is a
component-dependent structure that consists of information neces-
sary to establish communication between processes. The informa-
tion that the binding handle has includes host machine address, port
number, etc. This is needed so that a process knows how to contact
the agent responsible for managing it.

(b) Determines the executable. Currently, this is implemented by having
the executable name passes as a command line argument.

(¢) Determines the application instance. Currently, this is implemented
by having the application instance identifier passes as a command
line argument.

(d) Registers with the agent. This notifies the agent of the existence of
a new process, and provides basic information about the process
that includes its name, process identifier, host, port number, start
time, executable from which it was instantiated, and the application
instance identifier.

At this point, information about an application instance and the processes
that it consists of may be retrieved from the MIR using RetrieveProcess-
esInAppInstance and RetrieveProcessInfo services. In our example,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Configuration Maintenance for Distributed Applications Management 237

assume that a process was started from the server executable and that three pro-
cesses were started from the client executable. If any management application or
other management entity knows the application instance identifier of the sched-
uler application then it can retrieve all the processes of the application instance
using RetrieveProcessesInAppInstance. If more information about pro-
cesses is required it can be retrieve using RetrieveProcessInfo.

6. EXPERIENCE

A key aspect of our work has been to evaluate the proposed management
services via prototypes and experimentation. This was done by examining man-
agement applications and developing a prototype of the management applica-
tions that made use of our configuration services and management applications.
A prototype implementation demonstrating some of our ideas and concepts was
shown at CASCON’96. The prototype platform was OSF/DCE [6] which was
chosen because of its availability and our past experiences with it. We will now
describe the prototype management applications that make use of the configu-
ration services.

6.1. Performance Management

Delays caused by poor performance at the application level or network level
can seriously affect the usability and effectiveness of a distributed application,
or an entire distributed environment. Both application developers and managers
of a distributed system must therefore take steps to ensure that their systems are
performing well.

Predictive performance models for distributed application systems can be
used by distributed application developers and performance management staff
to make quantitative comparisons between software design and system configu-
ration alternatives. Models and their performance evaluation techniques [9-11]
can also be used in capacity planning to determine whether specific application
objects should be placed in the same server or how server processes should be
allocated to nodes for a given workload mix of application requests.

The models require information about remote procedure call interactions
between application objects that includes type of process (i.e., client, server or
database). The RetProcessInApplInstance service is used to retrieve the
processes in the application instance that is being examined. The Retrieve-
ProcessInfo is used to retrieve information about a process. This information
includes the executable that the process was started from. The RetrieveCap-
suleInfo allows for the retrieval of link attributes that represent relationships
between Capsules. These three services are used to deduce the application pro-
cess dependencies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

238 Lutfiyya, Marshall, Bauer, Martin, and Powley

6.2. Automating Fault Location

One aspect of distributed application management is fault management—
detecting that the behavior of an application has deviated from the specification
of its desired behavior. This deviation is referred to as a failure, and is manifested
through observed symptoms. Symptoms are detected and reported by instrumen-
tation and management agents. At the source of a failure is a fault (or possibly
several faults). Symptoms alone do not provide enough information to allow the
fault to be corrected: many faults may give rise to the same symptom. We have
developed a management application, the Fault Management Tool [12], that auto-
mates the process of fault location. The steps in the fault location process are:
reducing the number of symptoms for further examination, determining a set of
system objects that could be the source of the fault, examining the failure history
of these objects to determine an order in which to test them, then, finally, testing
each object in turn. The tool makes use of configuration services to determine
the configuration of applications and hardware (for example, knowing the com-
munication path between two processes determines the set of objects that could
be the source of the fault), and of management agents and instrumentation for
determining the possible causes of a fault (through status checking and testing).

7. RELATED WORK

In this section we review related work in the areas of information models
and configuration management services.

7.1. Information Models

A choice of standards for configuration information models does exist.
While these standards are not explicitly associated with management, they can
be adapted for the management domain. They include:

+ ISO Management [13-15]

« Internet SNMP styled management [16—19]
+ A CORBA based approach [20]

« An OSF/DCE based approach [6]

« DMTF/DMI [21]

Choices of standard management models relevant to distributed applications did
not exist when we began our work. Recently, the Internet Engineering Task Force
(IETF) and the Desktop Management Task Force (DMTF) have proposed models
which cover some of application management as defined in this paper. Other has
work has recently appeared, but the focus is limited [22].

The IETF has proposed two extensions to its Management Information Base

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Configuration Maintenance for Distributed Applications Management 239

(MIB) structure called the Systems Application MIB [23] and the Application
MIB [24]. The System Application MIB maintains information about applica-
tions that have been installed and run on a node. This information is limited
to what can be obtained without instrumenting the application code, such as
the application packages installed and their component files and executables;
the application instances started and the processes making up an instance; and
system-level measurements such as CPU usage and memory usage of a pro-
cess. The Application MIB extends the System Application MIB structure to
include attributes that require instrumentation of applications. In particular, it
adds information on open files, open connnections to other processes, and trans-
action statistics.

The MIB descriptions are low-level compared to our information model.
Our model provides powerful object-oriented abstraction mechanisms like inher-
itance which are not used in the MIBs. Our model provides more detailed
descriptions of the code and runtime views of a distributed application than can
be formulated with the MIBs. Our model also describes the distributed runtime
environment of an application while the MIBs can only describe each local node
individually.

The DMTF has proposed the Management Information Format (MIF) [25]
which is similar to MIBs with respect to its modeling capabilities and which has
the same shortcomings as MIBs when compared with our model. We note, how-
ever, that Tivoli Systems has extended the MIF specification to cover distributed
applications in their Application Management Specification (AMS) [26].

In another effort, the DMTF has proposed the Common Information Model
(CIM) [27] which, in the same way as our model, applies object-oriented mod-
eling techniques to network and systems management. A management schema
in the CIM consists of a set of classes which defines a common framework for
a description of the managed environment. The management schema is divided
into three conceptual layers:

o Core schema captures notions applicable to all areas of management.

o Common schema captures notions that are common to particular manage-
ment areas but independent of a particular implementation. The common
areas are systems, applications, databases, networks and devices.

o Exension schema captures implementation-specific extensions of the com-
mon schema.

The CIM Application Schema Definition, developed by the DMTF Application
Management Working Committee [28], is the component of the CIM closest to
our work. The Application Schema deals with the installation and deployment of
an application over its lifetime but does not include information relevant to other
aspects of management such as descriptions of the runtime environment. OQur
model, on the other hand, provides a more complete description of a distributed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

240 Lutfiyya, Marshall, Bauer, Martin, and Powley

application which can be used for configuration management, fault management,
and performance management.

The only other work we have found that does model the distributed runtime
environment is by Weinstock and Tewari [29]. They use an object model-to-
model their environment. This work focuses on the modeling requirements and
little has been done in determining how to collect and store the data defined in
the model.

7.2. Configuration Services

A review of the academic literature and current research [30-34] on con-
figuration management for distributed applications has been concerned primarily
with the development of languages and environments for the implementation of
reconfigurable systems. Most of these languages and systems adopt the prin-
ciple of the strict separation between a module configuration language, which
describes the overall static and dynamic structure of the program, and a module
programming language, which is used to implement the algorithms within the
application program. Reconfiguration facilities are usually restricted to a class
of changes and are embedded into the module configuration language.

A review of the commercial side shows that Tivoli Systems [35] and Com-
puter Associates [36] have products (based on one of the standards) that provide
services for installation and version tracking.

8. DISCUSSION

Our work has taught us a number of lessons about the operation and perfor-
mance of configuration management services and applications that we are using
to extend our work.

o Acquiring the data needed to perform management is a complex and
tedious task so a management framework must include tools to support
data acquisition. This includes tools to automatically extract configura-
tion information from application files and tools to support the automatic
generation of instrumentation code. We are working on tools that facili-
tate the instrumentation processes. We are currently developing a tool that
allows a developer from a graphical user interface (GUI) to pick probes
and points in a program that those probes are to be embedded into. The
tool automatically does the insertion and generates a makefile. An exten-
sion of this will use the IDL to determine where the probe points are. By
providing these types of tools we allow for the creation of manageable
applications without putting an undue broken on the developer.

« The instrumented application processes should not be a burden on scarce

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Configuration Maintenance for Distributed Applications Management 241

system resources due to excessive management overhead. We made use
of a Distributed Applications Management Testbed [37] to carry out some
initial performance measurements and analysis. In these experiments, it
was found that using instrumentation to manage an application accounted
for an average increase of only 3.4% (0.51 seconds) per application
remote procedure call. This is quite small when compared to the effects of
changing the application workload, a difference of 31.9% (4.2 seconds)
per call. While the impact on responsiveness was relatively small, there
was a more significant impact on resource utilization, with increases rang-
ing from 7.4—42.4%, depending on the resource considered (memory and
CPU utilization formed the two extremes here).

In other words, we could conclude that, given sufficient system
resources, our instrumentation prototype is practical in light of its low
impact on application responsiveness. However, if resources are scarce,
or a heavy system load is causing resource contention, management may
significantly impact performance. Further performance experimentation is
still needed.

We should note that no instrumentation makes the application more
difficult to manage.

+ We continue to evaluate and refine our information model and config-
uration services by developing addition management applications. Cur-
rently, we are developing a management application that supports process
resiliency. This is done by having a primary server process and backup
server processes. The primary and the backup execute on separate nodes.
The goal of the backup server process is to take over the role of the pri-
mary process, in case the primary process fails. This means that client
processes need to be notified of this as well as the management infor-
mation repository. The management information repository is examined
to determine those processes that depend on the primary server process.
These processes are then notified of the change the management informa-
tion repository is updated.

9. SUMMARY

In this paper we have examined a vertical slice of the layered management
architecture, namely the management applications and services related to con-
figuration management. We introduced an information model which captures the
configuration information for distributed applications and discussed a repository
service based on the model. The information model is a structurally object-ori-
ented model which captures both code and runtime information about a dis-
tributed application. We defined a set of services that should be available in the
configuration services subsystem to support maintenance of configuration infor-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

242 Lutfiyya, Marshall, Bauer, Martin, and Powley

mation and how the configuration services, management applications and the
repository service interact together using a sample distributed application. We
then described how the different types of configuration information is collected.
We presented two management applications that have been built which collect
configuration information and we discussed how the monitoring services sub-
system is used to determine changes to the configuration. Finally, we presented
our current work based on our experience.

ACKNOWLEDGMENTS

The authors wish to express their gratitude to the anonymous reviewers
whose feedback helped to improve the quality of the paper. The authors would
also like to thank IBM Canada Ltd and the National Science and Engineering
Research Council of Canada (NSERC) for their financial support.

REFERENCES

1. M. Bauer, P. Finnigan, J. Hong, J. Rolia, T. Teorey, and G. Winters, Reference architecture for
integrated distributed systems management. IBM Systems Journal, Vol. 33, No. 3, pp. 426444,
1994,

2. P. Martin and W. Powley, A management information model for distributed applications man-
agement. Proc. CASCON’96, Toronto, Canada, pp. 54—-63, November 1996.

3. J. Mylopoulos, A. Borgida, M. Jarke, and K. Koubarakis, Telos: A language for representing
knowledge about information systems (revised). Technical Report KRR-TR-89-1, Department
of Computer Science, University of Toronto, August 1990.

4. K. Raymond, Reference model of open distributed processing: A tutorial. In J. De Meer, B.
Mabhr, and S. Storp, (eds.), Open Distributed Processing II Elsevier Science B.V., North-Holland,
pp. 3-14, 1994,

5. Randy Otte, Paul Patrick, and Mark Roy, Understanding CORBA, Prentice-Hall Inc., 1996.

6. Open Software Foundation, DCE User’s Guide and Reference, 1992.

7. Michael J. Katchabaw, Stephen L. Howard, Andrew D. Marshall, and Michael A. Bauer, Evalu-
ating the costs of management: A distributed applications management testbed, Proc. CASCON
’96, Toronto, Canada, November 1996,

8. M. J. Katchabaw, Stephen L. Howard, H. L. Lutfiyya, and M. A. Bauer, Efficient manage-
ment data acquisition and run time control of DCE applications using the OSI management
framework, Second International IEEE Workshop on Systems Management, Toronto, Canada,
pp. 104-111, June 1996.

9. J. Rolia, V. Vetland, and G. Hills, Ensuring responsiveness and scalability for distributed appli-
cations, Proc. CASCON 95, Toronto, Canada, pp. 28—41, November 1995.

10. J. A. Rolia and K. C. Sevcik, The method of layers. IEEE Transactions on Software Engineering,
Vol. 21, No. 8, pp. 689-700, August 1995.

11. C. M. Woodside, J. E. Neilson, D. C. Petriu, and S. Majumdar, The stochastic rendezvous net-
work model for performance of synchronous client-server-like distributed software. IEEE Trans-
actions on Computers, Vol. 44, No. 1, pp. 20-34, January 1995.

12. C. Turner, Fault location in distributed systems, Master’s thesis, The University of Western
Ontario, September 1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Configuration Maintenance for Distributed Applications Management 243

13. ISO, Information Processing Systems, Open Systems Interconnection, Basic Reference Model,
Part 4: Management Framework International Organization for Standardization, International
Standard 7498-4, 1991,

14. 1SO. Information Processing Systems, Open Systems Interconnection, Common Management
Information Protocol Specification. International Organization for Standardization, International
Standard 9596-1, 1991.

15. ISO. Information Processing Systems, Open Systems Interconnection, Systems Management
Overview. International Organization for Standardization, International Standard 10040, 1991.

16. J. D. Case, M. Fedor, M. L. Schoffstall, and C. Devin, Simple Network Management Protocol
(SNMP). The Internet Engineering Task Force, May 1990. Request for Comments 1157.

17. J. D. Case, K. McCloghrie, M. T. Rose, and S. Waldbusser, Structure of management information
for version 2 of the Internet-standard network management framework. The Inernet Engineering
Task Force, April 1993. Request for Comments 1441.

18. J. D. Case, K. McCloghrie, M. T. Rose, and S. Waldbusser, Structure of management information
for version 2 of the Simple Network Management Protocol (SNMPv2). The Internet Engineering
Task Force, April 1993. Request for Comments 1442,

19. M. T. Rose and K. McCloghrie, Structure and identification of management information for
TCP/IP based Internets. The Internet Engineering Task Force, May 1990. Request for Comments
1155.

20. Object Management Group, The common object request broker architecture: Architecture and
specification, 1991. OMG Document No. 91.12.1.

21. The Desktop Management Task Force, Desktop management interface specification, The Desk-
top Management Task Force, 1994,

22. C. Gbaguidi, S. Znaty, and J-P. Hubaux, Multimedia resource: An information model and its
application to an MPEG?2 video codec, Journal of Network and Systems Management, Vol. 6,
No. 3, pp. 313-331, September 1998.

23. Internet Engineering Task Force, Definitions of system-level managed objects for applications,
Internet Draft, April 1997.

24. Internet Engineering Task Force, Application management MIB, Internet Draft, March 1997.

25. Desktop Management Task Force, Desktop management interface specification Version 2.0,
March 1996.

26. Tivoli Systems, Applications management specification 1.1. Retrieved from http://www.tivoli.
com/amsreg/AMS+Spec+Registration. html, July 1997.

27. Desktop Management Task Force, Common Information Model (CIM) Version 1, April
1997.

28. Desktop Management Task Force, The common information model application schema def-
inition, February 1997. Retrieved from hstp://hplbwww.hpl.hp.com/people/arp/dmif/papers/
applicationschema/appman5.htm, July 1997.

29. J. A. Weinstock and R. Tewari, A general object model for the management of distributed
systems, Second International IEEE Workshop on Systems Management, Toronto, Canada, pp.
104-111, June 1996.

30. F. Cristian, Automatic reconfiguration in the presence of failures, IEEE Software Engineering
Journal, Vol. 8, No. 2, pp. 53-60, March 1993.

31. M. Endler, A model for distributed management of dynamic changes, Fourth IFIP/IEEE Inter-
national Workshop on Distributed Systems: Operations and Management DSOM’93, Long
Branch, New Jersey, October 1993.

32. F. Faure and D. Marquie, Service dynamic management: A configuration micromanager,
Fourth IFIP/IEEE International Workshop on Distributed Systems: Operations and Manage-
ment DSOM’93, Long Branch, New Jersey, October 1993.

33. Christine Hofmeister, Elizabeth White, and James Purtilo, Surgeon: A packager for dynamically

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

244 Lutfiyya, Marshall, Bauer, Martin, and Powley

reconfigurable distributed applications. IEEE Software Engineering Journal, Vol. 8, No. 2, pp.
95-101, March 1993.

34. Jeff Kramer, Editorial: Configurable distributed systems, IEEE Software Engineering Journal,
Vol. 8, No. 2, pp. 51-52, March 1993.

35. Tivoli Systems, Tivoli applications management specification, 1995.

36. Computer Associates, Change and application configuration management product direction.
http:/ /www.cai.com/products/addbm/ccm/ccm.htm.

37. M. J. Katchabaw, S. L. Howard, A. D. Marshall, and M. A. Bauer, Evaluating the costs of
management: A distributed applications management testbed, Proc. CAS Conference, Toronto,
Canada, pp. 29-41, November 1996.

Hanan L. Lutfiyya is an associate professor of Computer Science at the University of Western
Ontario. Dr. Lutfiyya graduated from the University of Missouri-Rolla with a degree in Computer
Science. Her research interests are in distributed applications and systems management, distributed
systems theory and software engineering. She has convened and chaired a workshop on applications
management at CASCON97 and is an active organizer of the Systems Management Workshop.

Andrew D. Marshall is a Research Associate with the MANDAS Project at the University of
Western Ontario. He is also a doctoral candidate in Computer Science at UWO. His research interests
include management of distributed applications and systems, software engineering for distributed
systems and software reengineering.

Michael A. Bauer is Senior Director, Information Technology Services, at the University of
Western Ontario. He is also a Professor in, and former Chair of, the Department of Computer Sci-
ence. His research interests include distributed computing, applications of high-speed networks and
software engineering.

Patrick Martin is an Associate Professor at Queen’s University of Kingston. His research
interests include data warehousing and resource management in database management systems.

Wendy Powley is a Research Associate with the MANDAS Project at Queen’s University at
Kingston. Her research interests include information repositories and data warehouses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

